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SUMMARY 

In order to obtain stable and accurate numerical solutions for the convection-dominated steady transport equations, 
we propose a criterion for constructing numerical schemes for the convection term that the roots of the 
characteristic equation of the resulting difference equation have poles. 

By imposing this criterion on the difference coefficients of the convection term, we construct two numerical 
schemes for the convection-dominated equations. One is based on polynomial differencing and the other on locally 
exact differencing. 

The former scheme coincides with the QUICK scheme when the mesh Reynolds number (Rm) is t ,  which is the 
critical value for its stability, while it approaches the second-order upwind scheme as Rm goes to infinity. Hence 
the former scheme interpolates a stable scheme between the QUICK scheme at Rm = $ and the second-order 
upwind scheme at Rm = 03. Numerical solutions with the present new schemes for the one-dimensional, linear, 
steady convection-difision equations showed good results. 

KEYWORDS: finite difference method (FDM); computational fluid dynamics; transport equation; numerical stability; numerical 
oscillations; characteristic equation; LECUSSO scheme; QUICK scheme; LENS scheme 

1. INTRODUCTION 

When we construct numerical schemes, both good stability and accuracy of the numerical solutions are 
required. In this connection we have recently proposed a new finite variable difference method 
(FVDM)lY2 in which a variable spatial difference instead of the conventional Ax is employed for the 
discretization of the convection term. The variable spatial difference is optimized from the viewpoint of 
numerical stability and accuracy. Namely, the optimum spatial difference is determined in terms of the 
mesh Reynolds number so that the variance of the numerical solutions is minimized under the 
condition that the roots of the resulting characteristic equation are to be non-negative to ensure 
numerical stability. 

In our previous studies'.2 the FVDM was applied to the LENS scheme3 based on locally exact 
numerical differencing and to the QUICK scheme4 based on polynomial differencing. The optimum 
spatial differences of these two schemes for the linear convection-diffision equation were evaluated in 
terms of mesh Reynolds numbers up to 1000. By using this optimum spatial difference, the numerical 
accuracy of the convection-difision equations was increased greatly without spatial oscillations. 

From our previous two papers'.' we can conclude that good stability and high accuracy of the 
numerical solutions at large mesh Reynolds numbers, i.e. values greater than about 10, are achieved 
simultaneously when the roots of the characteristic equation of the difference equation have poles. 
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Based on this fact, we propose a criterion that the roots of the characteristic equation of the resulting 
difference equation have poles for constructing essentially stable and accurate numerical schemes for 
the convection-dominated equations. 

By imposing this new criterion on the difference coefficients of the convection term, we construct 
new robust numerical schemes for the convection-dominated steady transport equations. These 
schemes are examined through numerical experiments. 

2. MATHEMATICAL FORMULATION 

2.1. Transport equation 

We consider the one-dimensional, steady, linear convection4iffusion equation 

d24 d 4  R - = O  
d x 2  dx ’ 
-- 

where 4 is the transported quantity and x denotes the Cartesian space co-ordinate. R is the ratio of the 
transport velocity v to a diffusion parameter v such as the kinematic viscosity. Here we assume that v is 
positive and R is constant. 

2.2. Difference formula 

We approximate the convection term in (1) as 

with Ax the uniform mesh size. Here 4i+llz and 4;- 
and x = x i  - Ax12 respectively. These quantities are approximated for v > 0 by 

are the transported quantities at x = x i  + Ad2 

4;+1,2 = a4;+l + b4; + c4i-19 (34  

Since we are considering a uniform mesh size grid and a constant R, we set a’ = a, b’ = b and c‘ = c. 

2.3. Characteristic equation’ 

Discretizing the convection and diffusion terms in (1) with equation (2) and the second-order central 
scheme respectively, we have 

(4i+l - 24; + 4i-1) -Rm[(a+i+l + b4j + c4i-I) - (a4j + b4i-1 + ~ 4 ; - 2 ) 1 =  0, (4) 

with Rm=RAx (mesh Reynolds number). Rearranging the above equation yields the difference 
equation 

A4i+l + B4;  + C4j-I + D4j-2 = 0, ( 5 )  

where 

A = 1 - (Rm)a, 

B = - [2  + Rm(b - a)], (6b) 
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C = 1 - Rm(c - b), (6c) 

D = (Rm)c. 

Equation ( 5 )  has the exact solution 

#+ = @ ( A d i  + P ( A d  + Y @ d i ,  
where a, fl and y are constants determined by the boundary conditions. In (7), ill, A2 and A3 are the 
roots of the characteristic equation 

A13 + BA2 + CA + D = 0. (8) 

From (6) we get the relation 

A + B +  C + D  = 0. (9) 

Hence equation (8) has the root A1 = 1 and can be factorized as 

(A - 1 ) { [ 1  - (Rm)a]A2 - [l  + Rm(1 - c - a)]A - (Rm)c} = 0. (10) 

From this equation we obtain the other two roots 

1 +Rm(l  - c - a ) + J E  
2[1 - (Rm)a] 

1 2  = 

1 +Rm(l  - c - a ) - J ' c  
2[1 - (Rm)a] 

A3 = 

where 

'c = [ 1 + Rm( 1 - c - a)I2 + 4[ 1 - (Rm)a](Rm)c. (12) 

2.4. Optimizing condition 

In Section 1 we set up a criterion that the roots of the characteristic equation of the difference 
equation have poles for constructing numerical schemes for the convection term of the convection- 
dominated steady transport equations. According to this criterion, the condition optimizing numerical 
schemes from the viewpoint of numerical stability and accuracy is given by 

1 - (Rm)a = 0. (13) 
In our previous papers',' the coefficient a depended on Rm and p, which is related to the variable 

spatial difference used in discretizing the convection term. In those papers we solved 

1 - (Rm/2p)a(Rm,p) = 0, (14) 
given a value of Rm, and determined the optimum p in terms of Rm. However, in (2 )  and (3) we 
consider p = %, which corresponds to the usual FDM. Accordingly, p is constant in (1 3) and equation 
( 1  3) is easily solved as 

a = 1/Rm. (15) 
Consequently, equation ( 1  5 )  is the condition optimizing numerical schemes from the viewpoint of 
stability and accuracy when p = i. 
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2.5. Determination of difference coeficients 

Now we determine the difference coefficients (a, b, c) and construct optimized numerical schemes. 
In order to determine these three coefficients, we need two more conditions in addition to (1 5). Then 
we have two conceptions of numerical differencing as reviewed in Section 1. One is polynomial 
differencing and the other locally exact differencing. We construct two schemes according to these two 
different conceptions. 

2.5.1. New Scheme 1 based on polynomial differencing. Expanding equation (3a) into a Taylor 
series with respect to the mesh point i yields 

where O(Ax2) denotes the higher-order terms. By equating the zeroth- and first-order terms 
respect to Ax on the left and right sides of (16) ,  we obtain 

a + b + c =  1, 

Equation ( 1  7) corresponds to the consistency condition that the right-side difference equation of (2)  
approaches the left-side differential equation as Ax goes to zero. 

From ( 1  5), ( 1  7 )  and ( 1  8) we obtain 

b = 5 - 2fRm, (19) 

c =  I f R m - $ .  (20) 

This new scheme (a = lJRm, b = 1 - 2 fRm, c = 1IRm - %) is simple in respect of its dependence on 
Rm and possesses interesting aspects. Namely, this scheme coincides with the QUICK scheme at 
Rm = f, which is the critical value to ensure a stable solution with the QUICK scheme. Moreover, as 
Rm goes to infinity, this scheme approaches the second-order upwind scheme, which is the same 
situation as in the case of the LENS scheme. Hence this new scheme interpolates a stable scheme 
between the QUICK scheme at Rm = and the second-order upwind scheme at Rm = 00. Although 
this scheme was originally derived on the basis of Rm greater than about 10, it showed stable solutions 
of (1) at Rm greater than 1 .O, but its accuracy was less than that of the QUICK scheme at Rm less than 
f,  according to numerical experiments. Taking into consideration these situations, we construct a robust 
scheme applicable for all mesh Reynolds numbers by combining those two schemes as follows: 

(for Rm < t )  QUICK scheme, (2  1 4  

(for Rm > 9) New Scheme 1 given by (15), (19) and (20) .  (21b) 

2.5.2. New Scheme 2 based on locally exact differencing. Equation (17) is a necessary condition 
for the resulting difference equation to converge to the convection term in (1) as Ax goes to zero. 
Next we get the third condition to determine the coefficients (a, b, c )  based on locally exact 
differencing. 
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According to the conception of locally exact differen~ing,~ we impose that equation (3) satisfy 
(b = exp(ox), where w is a non-zero root of the characteristic equation of the differential equation (not 
difference equation) we want to solve; in the case of (I), o = R. This imposition yields 

exp(o~i+ip)  = aexp(wxi+i) + bexp(Uxi) + cexp(oxi-1). (22) 

In the case of a uniform mesh size grid, equation (22) is equivalent to 

where om = oh.  
From (1 5) ,  (17) and (23) we obtain 

(1 - 1/Rm)exp(-20m) - exp(-wm/2) + 1/Rm 
exp(-20m) - exp(-om) 

b =  

exp(-w,/2) - (1 - l/Rm)exp(-o,) - 1/Rm 
exp(-20m) - exp(-om) 

C =  

3. TEST CALCULATIONS AND DISCUSSION 

We perform numerical experiments in a one-dimensional geometry with the uniform mesh size 
Ax = &, in which the total mesh number and the total computational length are 11 and 1 respectively. 
The boundary values at x = 0 and x = 1 are set to $(O) = 1 and &( 1) = 0 respectively. This test 
calculation with a Dirichlet outflow boundary condition is a difficult problem since it generates a thin 
boundary layer near the exit (x = 1) as the mesh Reynolds number increases. 

First we compare the exact solution with the numerical solutions for the convection-difksion 
equation without source terms, equation (1). Table I presents a comparison of these solutions at 
Rm = 100. In this table the variance t~ is defined as 

Table I. Comparison of numerical solutions with exact solution 

I Analytical Original QUICK New Scheme 1 New Scheme 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
__ 

1 ~000000 
1 ~000000 
1~000000 
1 ~000000 
1-000000 
1 ~000000 
1~000000 
1~000000 
1~000000 
1 ~000000 
0~000000 

Variance u 

1~000000 
1~000000 
0.997522 
1.002680 
0.991089 
1 .O 1 6990 
0.959083 
1.088540 
0.799156 
1 446040 
0~000000 

2.26531 x 10- 

1 ~000000 
1~000000 
1 ~000000 
1 ~000000 
1 ~000000 
1 ~000000 
1~000000 
1~000000 
1 ~000000 
1~000000 
0~000000 

4.48216 x 10 2 

1~000000 
1~000000 
I ~000000 
1 ~000000 
1 ~000000 
1 ~000000 
1 ~000000 
1~000000 
1~000000 
1~000000 
0~000000 

- 33 6.14057 x 



1046 K. SAKAI 

. .  . .  . .  
1.4 

1.21 

E x a c t  S o l u t i o n  ,:: 

o New S c h e m e  1 & 2 I: - - - -  L E N S  0.4 

QU [ CK 'I i 
I I I I I  I l i  

0.0.0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 
Figure 1. Comparison of numerical solutions with exact solution (case I )  

where #; and &(xi) represent the numerical solution and exact solution at mesh number i respectively. 
The present two schemes predict the exact solution quite well without oscillations; their variances are 
considered to be almost within round-off error. 

Next we consider the transport equation with source terms such as 

where S and Q are the intensities of internal and external sources respectively and Q = (x - 0.5)'. We 
solve equation (27) under the same computational conditions that were used in the first test 
calculations. There exist two non-zero roots of its characteristic equation as follows: 

Which of the roots 01 and 0 2  is better for o in (22) depends mainly on S and weakly on Rm. In this 
experiment w1 is better at small absolute values of S while o2 is better at large absolute values of S. 
Here we consider two cases: Rm = 10 and S = - 10 for case 1 ; Rm = 100 and S = 1000 for case 2. In 
case 1 we used o = w1 while in case 2 we used o = 02. 

Comparisons of the numerical solutions with the analytical solution for cases 1 and 2 are shown in 
Figures 1 and 2 respectively together with the solutions by the QUICK and LENS schemes. The 
solutions with the two new schemes are almost the same. As already mentioned, the exact solution 
shows a thin boundary layer near the exit. We use a coarse mesh grid to make clear the difference 
between the exact and numerical solutions in this test calculation. Since no computational mesh points 
exist within the thin boundary layer, we cannot discuss the numerical accuracy in this layer. However, it 
is remarkable that the new schemes predict well the exact solution at the computational mesh points. 

In the above test calculations a steep gradient of # exists near the exit boundary, where # just 
downstream from the steep gradient is not calculated but given as the boundary condition. There is a 
case where numerical instability may occur near downstream from the steep gradient of #. Hence we 
solve equation (27) with strong internal absorptions in the almost half computational region, in which a 
steep gradient exists in the inner region. A comparison of the solutions with S(x) = 0 for 0 < x < 0.55 
and S(x) = 5000 for 0.55 < x < 1 at Rm = 50 is shown in Figure 3. A comparison of the solutions with 
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0.4 - Exact Sol. 
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Figure 2. Comparison of numerical solutions with exact solution (case 2) 

S(x) = 0 for 0 d x d 0.55 and S(x) = lo6 for 0-55 < x d 1 at Rm = 50 is shown in Figure 4. In these 
figures NSl and NS2 denote New Scheme 1 and New Scheme 2 respectively. The solutions with these 
two schemes were almost the same. The numerical solutions in Figure 4 are in good agreement with 
the exact solution at the mesh points. 

4. CONCLUSIONS 

From our previous studies on a new finite variable difference method (FVDM) we concluded that good 
stability and high accuracy of the numerical solutions for the steady transport equations at large mesh 
Reynolds numbers, i.e. values greater than about 10, are achieved simultaneously when a root of the 
characteristic equation of the difference equation approaches its asymptote. Based on this fact, we 
proposed a criterion for constructing numerical schemes for the convection term of the convection- 
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Figure 3. Comparison of numerical solutions with exact solution for Rm = 50 and S(x) = 5000 (0.55 < x d 1) 
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X 
Figure 4. Comparison of numerical solutions with exact solution for Rm = 50 and S(x) = lo6 (0.55 < x < 1) 

dominated transport equations that the roots of the characteristic equation of the resulting difference 
equation have poles. 

By imposing this criterion on the difference coefficients of the convection term, we constructed two 
numerical schemes based on polynomial differencing and local exact differencing. The former is 
simple in respect to its dependence on Rm and coincides with the QUICK scheme at Rm = 3, which is 
the critical value to ensure stable solutions with the QUICK scheme. Moreover, as Rm goes to infinity, 
this scheme approaches the second-order upwind scheme. Hence this new scheme interpolates a stable 
scheme between the QUICK scheme at Rm = 3 and the second-order upwind scheme at Rm = co. 
Finally, we proposed a scheme applicable for all mesh Reynolds numbers by combining the present 
new scheme with the QUICK scheme at Rm = 3. 

Numerical solutions with these new schemes for the steady, linear convection-difision equations 
showed good results. 
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